Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Catalytic enantioselective 1,2-dicarbofunctionalization (1,2-DCF) of alkenes is a powerful transformation of growing importance in organic synthesis for constructing chiral building blocks, bioactive molecules, and agrochemicals. Both in a two- and three-component context, this family of reactions generates densely functionalized, structurally complex products in a single step. Across several distinct mechanistic pathways at play in these transformations with nickel or palladium catalysts, stereocontrol can be obtained through tailored chiral ligands. In this Review we discuss the various strategies, mechanisms, and catalysts that have been applied to achieve enantioinduction in alkene 1,2-DCF. 1 Introduction 2 Two-Component Enantioselective 1,2-DCF via Migratory Insertion 3 Two-Component Enantioselective 1,2-DCF via Radical Capture 4 Three-Component Enantioselective 1,2-DCF via Radical Capture 5 Three-Component Enantioselective 1,2-DCF via Migratory Insertion 6 Miscellaneous Mechanisms 7 Conclusionmore » « less
-
null (Ed.)Abstract Electron-deficient olefin (EDO) ligands are known to promote a variety of nickel-catalyzed cross-coupling reactions, presumably by accelerating the reductive elimination step and preventing undesired β-hydride elimination. While there is a growing body of experimental and computational evidence elucidating the beneficial effects of EDO ligands, significant gaps remain in our understanding of the underlying coordination chemistry of the Ni–EDO species involved. In particular, most procedures rely on in situ assembly of the active catalyst, and there is a paucity of preligated Ni–EDO precatalysts. Herein, we investigate the 16-electron, heteroleptic nickel complex, Ni(COD)(DMFU), and examine the performance of this complex as a precatalyst in 1,2-diarylation of alkenes.more » « less
-
null (Ed.)We report a full account of our research on nickel-catalyzed Markovnikov-selective hydroarylation and hydroalkenylation of non-conjugated alkenes, which has yielded a toolkit of methods that proceed under mild conditions with alkenyl sulfonamide, ketone, and amide substrates. Regioselectivity is controlled through catalyst coordination to the native Lewis basic functional groups contained within these substrates. To maximize product yield, reaction conditions were fine-tuned for each substrate class, reflecting the different coordination properties of the directing functionality. Detailed kinetic and computational studies shed light on the mechanism of this family of transformations, pointing to transmetalation as the turnover-limiting step.more » « less
-
Nickel-catalyzed three-component alkene difunctionalization has rapidly emerged as a powerful tool for forging two C–C bonds in a single reaction. Building upon the powerful modes of bond construction in traditional two-component cross-coupling, various research groups have demonstrated the versatility of nickel in enabling catalytic 1,2-dicarbofunctionalization using a wide range of carbon-based electrophiles and nucleophiles and in a fully intermolecular fashion. Though this area has emerged only recently, the last few years have witnessed a proliferation of publications on this topic, underscoring the potential of this strategy to develop into a general platform that offers high regio- and stereoselectivity. This minireview highlights the recent progress in the area of intermolecular 1,2-dicarbofunctionalization of alkenes via nickel catalysis and discusses lingering challenges within this reactivity paradigm.more » « less
-
Abstract We report that Ni(COD)(DQ) (COD=1,5‐cyclooctadiene, DQ=duroquinone), an air‐stable 18‐electron complex originally described by Schrauzer in 1962, is a competent precatalyst for a variety of nickel‐catalyzed synthetic methods from the literature. Due to its apparent stability, use of Ni(COD)(DQ) as a precatalyst allows reactions to be conveniently performed without use of an inert‐atmosphere glovebox, as demonstrated across several case studies.more » « less
An official website of the United States government
